
Optimization on Computational Grid

Steve Wright

Math and Computer Science Division / Argonne Nationa

Computer Science Department / University of Chicag

wright@mcs.anl.gov

http://www.mcs.anl.gov/metaneos

'

&

Brains of The Out�t

A
R

G
O

N
NE

NATIONAL LABORA

TO
R

Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

8<
:

Jean-Pierre Goux

Jeff Linderoth

8>>>>>>>><
>>>>>>>>:

Qun Chen

Michael Ferris

Sanjeev Kulkarn

Miron Livny

Mike Yoder

'

&

More Brains of The Out�t

8<
:

Marcel Good

Jean-Pierre Goux
8<
:

Kurt Anstreicher

Nate Brixius

'

&

Topics

� Goals and Motivation for metaNEOS

� Target problem classes: Matching the platform with t

algorithm and problem class

� MW

� Case I: Integer LP

� Case II: QAP

� Case III: Stochastic LP

� iMW

� Conclusions and Plans

'

&

Computational Grid (a.k.a. Metacompu

A computational grid is a collection of computers (and ma

visualization and storage devices) that are geographically

distributed, but networked in various ways.

� Dynamic availability of processors

� Unreliability

� Poor communications properties

� Heterogeneity

� Scale.

We focus on inexpensive platforms, especially the Condor

which delivers a parallel computing environment consistin

time on networks of workstations.

'

&

Goals of metaNEOS

1. Design metacomputing environments and tools suitab

solving large optimization problems,

2. Identify optimization problems that �t these environm

develop algorithms to solve them, and

3. Use the resulting tools to solve problems of unprecede

and complexity.

'

&

2. Target Problem Classes and Algorith

Tackle only problem classes and algorithms for which the

metacomputing environment is really useful:

� Very large scale

� Compute-intensive rather than data-intensive

� Computation is divisible into a large number of tasks

require little synchronicity.

'

&

� Global Optimization: multistart smoothing algorith

(Mor�e, Zakeri);

� Integer Linear Programming: branch-and-bound

implemented as master-worker (Chen, Ferris, Linderot

� Stochastic Programming: veri�cation (Zakeri);

� Integer Nonlinear Programming: branch-and-bou

implemented as master-worker (Goux, Ley�er, Noceda

� Stochastic Programming: L-shaped decomposition

algorithm implemented as master-worker (Linderoth,

� Quadratic Assignment Problem: branch-and-bou

QP bounding and specialized branching, implemented

master-worker (Anstreicher, Brixius, Goux, Linderoth

'

&

1. Platforms and Tools

metaNEOS includes researchers from two metacomputing

� Globus: www.globus.org

� Condor: www.cs.wisc.edu/condor

Globus project is developing basic software infrastructure

(middleware) for computations that integrate geographica

distributed computational and information resources.

Condor provides software tools that support high through

computing on distributively owned resources (w.g. workst

a campus). Can use Globus to grab resources for a user's

(Personal Condor).

'

&

Standard Condor

� User submits job from submitting machine (S); Condo

Manager (C) �nds an executing machine (E) in the C

pool and activates a \starter" on this machine.

� Starter obtains binary from S and runs it on E.

� Condor traps system calls (e.g. I/O) and processes th

S instead of E; E's �le system is protected.

� Starter checkpoints the job periodically (sends checkp

back to S or to a checkpoint server.

� If job is killed on E (e.g. user of E starts to run somet

�nds a new E and restarts job from the last checkpoin

(migration).

'

&

'

&

Remote System Calls

'

&

Parallel Computation using Condor

Machine S can send a bunch of jobs to the Condor pool a

executing on E1; E2; : : : ; EN . Opens the door to parallel

algorithms.

Since communication can occur only as S $ E1, S $ E2,

paradigms that require lots of interprocessor communicati

di�cult to support.

However, paradigms such as task-farming and master-wor

master running on S) can be supported easily|in princip

To use Condor e�ectively, need an API suitable for implem

of parallel optimization algorithms that use the Master-W

paradigm.

'

&

MW: Master-Worker

� MW is an API that supports Master-Worker computa

Condor platforms.

� Uses Condor/PVM (PVM=Parallel Virtual Machine)

adds three functions to PVM:

� HostAdd

� HostSuspend

� HostDelete

� User is responsible for taking appropriate actions in th

these things happening.

� Developers: Yoder, Linderoth, Goux.

'

& Condor Workers

Data
Global

T1 T3 T4 T5 T6T2

Task Pool

W1

W2 W3

W4Result

Work

PVM
Comm

 (Master / Driver)
Submitting Machine

'

&

MW Abstraction

� MWMaster

� get userinfo()

� setup initial tasks()

� pack worker init data()

� act on completed task()

� MWTask

� (un)pack work

� (un)pack result

� MWWorker

� unpack worker init data()

� execute task()

'

&

MWApplications

� MWFATCOP { A branch and cut code for linear inte

programming

� MWMINLP { A branch and bound code for nonlinear

programming

� MWSVM { A column generation code for solving sup

vector machine problems

� MWLShaped { A cutting plane and veri�cation code

stochastic programming

� MWQAP { A branch and bound code for solving the

assignment problem

� : : : (Your application here) : : :

'

&

FATCOP

� Originally used Condor/PVM directly; now uses MW

� Implements the various steps associated with a branch

approach: preprocessing, branching, bounding, adding

� At any given time, we have a pool of tasks (each task

relaxation) and workers (each worker is machine that

acquired through Condor/PVM and that processes ta

at a time, until it goes away).

� The LP code used by each worker does not have to be

same. (SOPLEX, CPLEX).

� Developers: Chen and Ferris (Wisconsin) + Linderoth

version).

'

&

'

&

'

&

Stochastic Programming

(Linderoth). Two-Stage Linear Recourse Program

min cTx+
PK

k=1 pkq
T
k yk;

s.t. Ax = b;

Tkx+Wyk = hk; k = 1; 2; : : : ;K;

x � 0; yk � 0; k = 1; 2; : : : ;K:

� K: A number of \scenarios"

� x: First-stage variables

� yk: Second-stage variables

� pk: Scenario probabilities

'

&

Reformulating

� Can also express as a problem with a piecewise-linear ob

in the variables x only:

min
x

cTx+Q(x); s.t.Ax = b; x � 0;

where Q(x) is de�ned as

Q(x) = miny1;y2;:::;yK
PK

k=1 pkq
T
k yk;

s.t. Wyk = hk � Tkx; k = 1; 2; : : : ;K:

yk � 0; k = 1; 2; : : : ;K:

� Important Facts:

� Q(x) is a piecewise linear convex function of x.

� Evaluation of Q(x) is a separable problem; can sol

k = 1; 2; : : : ;K independently.

'

&

L-shaped (Benders) decomposition

� Represent Q by an arti�cial variable � and �nd suppo

planes for �: � � �` � �T` x; ` = 1; 2; : : : ; L:

� Inequalities obtained as a byproduct of evaluating

L-Shaped Method

1. Solve a master problem with the current �-approxim

Q(x), to obtain candidate �rst-stage solution x̂;

2. Fix x = x̂ and Solve the subproblems for y1; y2; : : : ;

(evaluating Q(x̂)). Use subproblem solution data to a

supporting planes for � approximation at x̂.

3. Goto 1.

'

&

Quasi-Multi-Cuts

� \Classical" L-Shaped) Q � �

� �
KX
k=1

pk�
T
k�hk �

KX
k=1

pk�
T
k�Tkx

� \Multicut") Q �
PK

k=1 �k

�k � �Tk�hk � �Tk�Tkx

� We can actually partition the scenarios any way we lik

\Quasi"-Multicut) Q �
Pn

j=0 �[�j :::�j+1]:

�[�j :::�j+1] �

�j+1X
k=�j

pk�
T
k�hk �

�j+1X
k=�j

pk�
T
k�Tkx

'

&

MWLShaped { LShapedMaster

� get userinfo()

� Reads initial data, solves the expected value proble

a good guess for x.

� pack worker init data()

� Initial data are W and \compact" forms of pk; qk; T

� setup initial tasks()

� Solves �rst stage I LP.

� Creates a batch of tasks for the �rst iteration.

� act on completed task()

� If all tasks for this iteration are complete, add the

solve the linear program and add a new batch of ta

the next iteration.

'

&

MWLshaped { LShapedTask

� Work

� Starting scenario index (kb), and ending scenario in

� Stage I solution (x̂).

� Estimated expected stage II objective function valu

(�̂[kb ;ke]).

� Result

� A cut, if the estimate of (�[kb;ke]) is not good enou

� We form one cut per cluster of scenarios.

? The computing environment has inuenced our choice

algorithm!!

'

&

MWLShaped { LShapedWorker

� unpack init data()

� Unpacks the problems initial data and loads the \b

stage II LP to the solver.

� execute task()

� Solve LPs for all scenarios kb � k � ke, and create

possible.

'

&

Avoiding Synchronicity

� Di�erent processors act at di�erent speeds { many wa

the \slowpoke"

� \Balance" jke � kbj with the speed of the machines

arrive

{ Involves adding both columns and rows to the m

� All workers wait for the master LP

� Don't have the master wait for all tasks!!

+ If proportion � of the tasks for an iteration have

with cuts, start a new iteration

? Again, the computing environment has inuenced our

algorithmic choices!!

'

&

� vs E�ciency and Iteration Count

� MWLShaped { Synchronicity � vs e�ciency and itera

count

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ffi

ci
en

cy

Task Dependence Coefficient

85

90

95

100

105

110

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ite
ra

tio
ns

Task Dependence Coefficient

'

&

Machines used in Stochastic Programming

Solved 20,000 scenario instance, whose \deterministic equ

has > 3 million rows and > 14 million columns

0

10

20

30

40

50

60

70

80

90

100

3PM 4PM 5PM 6PM 7PM 8PM 9P

m
ac

hi
ne

s

'

&

MWQAP

(Anstreicher, Brixius, Goux, Linderoth)

Loc 1

Loc 4

Loc 2Fac 2

Fac 1

Fac 3
Loc 3

Fac 4

'

&

QAP formulation

min
�2�

nX
i=1

nX
j=1

aijb�(i)�(j) +
nX

i=1

ci�(i);

where

� (�(1); �(2); : : : ; �(n)) is a permutation of (1; 2; : : : ; n);

the location to which facility i is assigned.

� bkl is the distance between locations k and l;

� aij is the ow between facilities i and j;

� cik is the cost of building facility i at location k.

NP hard problem; n! possibilities.

Example: NUG25: If 1010 possible combinations evaluated

second, would still take 50 million years.

'

&

Basic Strategy: Branch and Bound

� Branch by

� �xing a facility i, and forming child nodes in which

assigned to each available location in turn;

� �xing location k, and forming child nodes in which

available facility is assigned to k;

� either one (50% better)

� Lower bound by solving a continuous relaxation

� Gilmore-Lawler bound

� Quadratic Programming bound (Anstreicher/Brixi

use it!

� Semide�nite Programming bound

'

&

Enhancements

Branching Strategy:

� Use dual information from QP, look-ahead, various he

� Branching rules evolve with depth in tree, duality gap

Knuth's Estimator:

� Estimates size of B&B tree, CPU time;

� Helps decide whether problem solvable or not

� Helps tune algorithm parameters (branching/boundin

'

&

Parallel Strategy

� A single task consists of processing a subtree depth-�r

Returns a task pool as result (or the solution), along

bound and statistical/performance information.

� Finish-Up Strategy: Take nodes that are deep in the t

(depth > 6) and traverse the subtree rooted at these n

the bottom. (Usually fast tasks.) Reduces the numbe

tasks that are returned by this task.

� Child Reordering based on bound information.

'

&
Proc1 Proc3Proc2

'

&

QAPLIB Challenge

www.imm.dtu.dk/~sk/qaplib/

NUG challenge problems, solved by Hahn et al. (serial ma

and Marzetta et al. (parallel machines).

NUG22 Ultra 360Mhz 56 Hours Hahn

NUG24 Ultra 360Mhz 9 days Hahn

NUG25 Ultra 360Mhz 66 days Hahn

NUG22 48-96 Cenju-3 9 days Marzetta(1)

NUG25 64-128 Paragon 30 days Marzetta(1)

'

&

MWQAP Results: NUG25

NUG25: 6.7 hours! (January 20, 2000)

Machines Linux / Solaris

Average # Machines 93

Equivalent Pool Performance 42

Parallel E�ciency 97%

Nodes 80,430,341

Total time 27 days

Normalized time 12.7 days

'

&

MWQAP Results: NUG27

World Record Problem in the NUG class. Wall clock: 24

(February 2000).

Machines Linux / Solaris

Average # Machines 136

Max # Machines 238

Equivalent Pool Performance 126

Parallel E�ciency N/A

Nodes 513,160,139

Normalized Cumulated time 127 days

'

&

World Records!

� Mixed Integer Nonlinear Programming

� Solved previously unsolved instances of a trim-loss

� Stochastic Programming

� Solved 20,000 scenario instance, whose \determinis

equivalent" has > 3 million rows and > 14 million

� Quadratic Assignment Problem

� Solved a di�cult (size 25) instance in a fraction of

(> 3 months) < 7 hours)

� Recently solved the world's largest QAP! (size 27)

� Gunning for the famous \nug30" instance { unsolv

over 30 years.

'

&

iMW

(Good and Goux.)

� Web-based problem solving environment

� Allows remote access to jobs running in MW:

� Remote Submission

� Remote Monitoring

� Remote Steering

� Customizable interface

'

&

Remote Submission

Web submission to server|like NEOS Server.

� Submits a form to iMW Apache server

� Java Servlet parses informatio

� Chooses unique ID, creates problem directory

� Compiles and submits problem to remote metacompu

'

&

Remote Monitoring

� User needs asynchronous feedback

� Master object contains control & status information

� Monitoring tool needs to communicate with master ob

needs to know its location.

� Seamless integration with object-oriented design of M

desirable!

CORBA!

Design a multithreaded object that runs the Master objec

MW application, returns a reference to the Master object

incoming CORBA calls.

'

&

Web Interface

� Via generic URLs, user can submit, monitor, steer

� Java Servlets running on an Apache server provide po

the iMW environment (The CORBA support availabl

helps a lot..)

� How to transmit and format the monitoring informati

the browser?

Portal
Servlet

Handler
Connector

CORBA

Client
Based
Web

'

&

HTML / Dynamic HTML

'

&

 Machine : cheetah.cs.wisc.edu

State : SUSPENDED

Operating system : SOLARIS26

Architecture : INTEL

RAM : 64

Virtual Memory : 185724

DiskSpace : 29794

KFlops : 47464

Mips : 221

CPUs : 1

Total time : 1356

Separate data description and display ; XML

'

&

<Worker>

<WorkerPhysicalProperties>

<WorkerName>cheetah.cs.wisc.edu</WorkerName>

<WorkerStatus>SUSPENDED</WorkerStatus>

<WorkerOpSys>"SOLARIS26"</WorkerOpSys>

<WorkerArch>"INTEL"</WorkerArch>

<WorkerMemory>64</WorkerMemory>

<WorkerVirtualMemory>185724</WorkerVirtualMemo

<WorkerDiskSpace>29794</WorkerDiskSpace>

<WorkerKFlops>47464</WorkerKFlops>

<WorkerMips>221</WorkerMips>

<WorkerCPUs>1</WorkerCPUs>

</WorkerPhysicalProperties>

<WorkerUsageProperties>

<WorkerTotalTime>1356</WorkerTotalTime>

<WorkerTotalWorking>1324</WorkerTotalWorking>

<WorkerTotalSuspended>32</WorkerTotalSuspended>

</WorkerUsageProperties>

'

&

</Worker>

'

&

XML Requirements

� De�ne MW Markup Language

� De�ne MW Solver Markup Language Extension

� De�ne XML �le schema (nested tree structure)

� XML visualization

� XML simple viewer

� XML Style Sheet script ; HTML / DHTML (sent

along with XML)

� Requires Internet Explorer 5 at present

